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Abstract
The purpose of this paper is to calculate the two-photon decay rate
corresponding to the two-photon transitions nS → 1S and nD → 1S in
hydrogen-like ions with a low nuclear charge number Z (for principal quantum
numbers n = 2, . . . , 8). Numerical results are obtained within a nonrelativistic
framework, and the results are found to scale approximately as (Zα)6/n3,
where α is the fine-structure constant. We also attempt to clarify a number
of subtle issues regarding the treatment of the coherent, quasi-simultaneous
emission of the two photons as opposed to one-photon cascades. In particular,
the gauge invariance of the decay rate is shown explicitly.

PACS numbers: 31.30.J-, 12.20.Ds, 32.80.Wr, 31.15.−p

1. Introduction

The subject of the current paper is the two-photon decay rate of excited atomic states,
interpreted as the imaginary part of the two-loop self-energy. We follow our previous
investigation reported in [1] and augment the analysis by treating the decay rate in both length
and velocity gauges. Special emphasis is placed on the role of singularities, infinitesimally
displaced from the integration contours for the photon energy integrations, which are generated
by bound-state poles of lower energy than the reference state (in the sense of the two-loop
self-energy). The reference state is equivalent to the initial state of the two-photon decay
process. A good quantitative understanding of the two-photon decay processes from highly
excited hydrogenic bound states is important for astrophysics, as emphasized in a recent paper
by Chluba and Sunyaev [2]. As the physics of the process is in principle well known and
has been discussed in a previous fast track communication [1], we see no obstacle to going in
medias res with the analysis.

Our purpose here, in addition to providing numerical data concerning the D → S
transitions, is to clarify the role of cascades of one-photon decays through so-called resonant
intermediate states, which are addressed using concepts developed in field theory [3, 4].
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Natural units with h̄ = c = ε0 = 1, i.e. e2 = 4πα, are used throughout this paper,
which is organized as follows. In section 2, the gauge invariance of the two-photon decay
rate, as derived from the two-loop self-energy, is reanalyzed. In section 3, numerical results
for nD → 1S transitions are presented; these were not treated in the previous paper [1]. A
discussion of our results, including a comparison to previous investigations of two-photon
decay from highly excited states (see [5–7]) is given in section 4. Cascade contributions are
analyzed in section 5. Conclusions are drawn in section 6.

2. Gauge invariance

We start by considering the two-photon self-energy for a reference state |φi〉 in a hydrogen-
like ion, as derived from nonrelativistic quantum electrodynamics (NRQED). In the velocity
gauge, the interaction Hamiltonian of the quantized electromagnetic field with the electron is
given by

HI = − e

2m
(�p · �A + �A · �p) +

e2 �A2

2m
, (1)

where �A is the vector potential of the quantized electromagnetic field.
The well-known expression (see, e.g., [1, 8]) for the two-loop self-energy reads (ω1 and

ω2 denote the energies of the two virtual quanta)

�E
(2)
i = lim

ε→0

(
2α

3πm2

)2 ∫ �1

0
dω1 ω1

∫ �2

0
dω2 ω2fε(ω1, ω2) = Re �E

(2)
i − i

δ	
(1)
i

2
− i

	
(2)
i

2
.

(2)

Here, Re �E
(2)
i is the real part of the energy shift, which gives rise, in particular, to the

so-called two-loop Bethe logarithms [9]. Our treatment relies on the identification of the
imaginary part of the energy shift in terms of the decay rate of the reference state, as suggested
by Barbieri and Sucher in [10]. In equation (2), δ	

(1)
i is a correction to the one-photon decay

rate, whereas 	
(2)
i is the two-photon decay rate. The former is obtained by terms where the

integration over ω1 or ω2 meets a bound-state pole and generates an imaginary part, in the
sense of equation (4) of [1], but the other photon energy is integrated with a principal-value
prescription. The latter term, 	

(2)
i , is obtained by selecting exclusively the imaginary part

generated by the singularities at ω1 + ω2 = Ei − Ev , where Ev is a virtual state contained in
one of the propagators. All expressions on the right-hand side of equation (2) are manifestly
of order α2(Zα)6m, i.e. (Zα)6R∞, where R∞ is the Rydberg constant.

The function fε reads as follows (with all infinitesimal imaginary parts duly taken into
account):

fε(ω1, ω2) = 〈φi |pj 1

E − H − ω1 + iε
pk 1

E − H − ω1 − ω2 + iε
pj 1

E − H − ω2 + iε
pk|φi〉

+
1

2
〈φi |pj 1

E − H − ω1 + iε
pk 1

E − H − ω1 − ω2 + iε
pk 1

E − H − ω1 + iε
pj |φi〉

+
1

2
〈φi |pj 1

E − H − ω2 + iε
pk 1

E − H − ω1 − ω2 + iε
pk 1

E − H − ω2 + iε
pj |φi〉 + · · · ,

(3)

where the terms denoted by the ellipsis are given in equation (3) of [1], being irrelevant for the
current investigation, because the two-photon decay rate is generated exclusively by the poles
where the sum ω1 + ω2 of both photon energies is on resonance. In a basis-set representation,
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the expression for the two-photon decay rate 	(2) is thus found from the first three terms in
equation (3) as [1]

	(2) = 4α2

9πm2
Re

∫ Ei−Ef

0
dω ω(Ei − Ef − ω)

×
(∑

v

{ 〈φf |pk|φv〉〈φv|pj |φi〉
Ei − Ev − ω + iε

+
〈φf |pk|φv〉〈φv|pj |φi〉

Ef − Ev + ω + iε

})

×
(∑

w

{ 〈φi |pk|φw〉〈φw|pj |φf 〉
Ei − Ew − ω + iε

+
〈φi |pk|φw〉〈φw|pj |φf 〉

Ef − Ew + ω + iε

})
, (4)

where we use the summation convention for the Cartesian coordinates labeled by the indices
j ∈ {1, 2, 3} and k ∈ {1, 2, 3}. The sum over v contains all virtual states, i.e. over the entire
bound and continuous spectrum. We here imply a sum over the magnetic projections of the
intermediate states, and the final state of the decay process, but an averaging over magnetic
projections of the initial state (since the decay rate does not depend on the magnetic projection
of the initial state, one may alternatively choose any allowed value for the initial state magnetic
projection).

We now assume all initial and final, and virtual states to be given in terms of hydrogen
wavefunctions in the standard representation (see, e.g., [11]), so that

〈φf |pj |φv〉〈φv|pj |φi〉 = 〈φi |pj |φv〉〈φv|pj |φf 〉, (5)

where the sum over j is assumed. We then do the angular algebra [12]. For nS → 1S
decays, one obtains a result [1] which reproduces the well-known expression obtained by
Göppert-Mayer in [13] for the particular case of |φi〉 = |2S〉,

	
(2)
nS = 4α2

27πm2
lim
ε→0

Re
∫ EnS−E1S

0
dω ω(EnS − E1S − ω)

×
(∑

ν

{ 〈1S‖�p‖νP〉〈νP‖�p‖nS〉
EnS − EνP − ω + iε

+
〈1S‖�p‖νP〉〈νP‖�p‖nS〉

E1S − EνP + ω + iε

})2

, (6)

where we use the definition of the reduced matrix elements according to [12]. The virtual P
states are also relevant for the nD → 1S decays, but the well-known prefactor is different [7],
and the result is

	
(2)
nD = 4α2

135πm2
lim
ε→0

Re
∫ EnD−E1S

0
dω ω(EnD − E1S − ω)

×
(∑

ν

{ 〈1S‖�p‖νP〉〈νP‖�p‖nD〉
EnD − EνP − ω + iε

+
〈1S‖�p‖νP〉〈νP‖�p‖nD〉

E1S − EνP + ω + iε

})2

, (7)

where for completeness we note that the reduced matrix element for P → D transitions differs
from the ‘radial’ component of the matrix element by a factor

√
2.

In the length gauge, the atom–field interaction is given by

HI = −e �E · �r, (8)

where �E is the quantized electric-field operator. The length-gauge two-photon self-energy is
obtained by straightforward fourth-order perturbation theory as

�E
(2)
i = lim

ε→0

(
2α

3πm2

)2 ∫ �1

0
dω1 ω3

1

∫ �2

0
dω2 ω3

2gε(ω1, ω2) = Re �E
(2)
i − i

δ	
(1)
i

2
− i

	
(2)
i

2
.

(9)
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We observe the factor ω3
1ω

3
2, which is characteristic of the length-gauge formulation. The

absence of the seagull term as opposed to the velocity gauge leads to a somewhat simplified
expression,

gε(ω1, ω2) = 〈φi |xj 1

E − H − ω1 + iε
xk 1

E − H − ω1 − ω2 + iε
xj 1

E − H − ω2 + iε
xk|φi〉

+
1

2
〈φi |xj 1

E −H − ω1 + iε
xk 1

E − H − ω1 − ω2 + iε
xk 1

E − H − ω1 + iε
xj |φi〉

+
1

2
〈φi |xj 1

E −H − ω2 + iε
xk 1

E − H − ω1 − ω2 + iε
xk 1

E − H − ω2 + iε
xj |φi〉

+ 〈φi |xj 1

E − H − ω1 + iε
xj

(
1

E − H

)′
xk 1

E − H − ω2 + iε
xk|φi〉

− 1

2
〈φi |xj 1

E − H − ω1 + iε
xj |φi〉〈φi |xk

(
1

E − H − ω2 + iε

)2

xk|φi〉

− 1

2
〈φi |xj 1

E − H − ω2 + iε
xj |φi〉〈φi |xk

(
1

E − H − ω1 + iε

)2

xk|φi〉. (10)

In contrast to equation (3), the momentum operators are replaced by position operators. In
analogy to equation (3), only the first three terms are relevant for the two-photon decay rate.
Using a basis-set representation, the expression for the two-photon decay rate derived in the
length gauge thus reads

	(2) = 4α2

9πm2
Re

∫ Ei−Ef

0
dω ω3(Ei − Ef − ω)3

×
(∑

v

{ 〈φf |xk|φv〉〈φv|xj |φi〉
Ei − Ev − ω + iε

+
〈φf |xk|φv〉〈φv|xj |φi〉

Ef − Ev + ω + iε

})

×
(∑

w

{ 〈φi |xk|φw〉〈φw|xj |φf 〉
Ei − Ew − ω + iε

+
〈φi |xk|φw〉〈φw|xj |φf 〉

Ef − Ew + ω + iε

})
, (11)

where the sum over v contains all virtual states. Using the identity∑
v

{ 〈φf |pk|φv〉〈φv|pj |φi〉
Ei − Ev − ω + iε

+
〈φf |pk|φv〉〈φv|pj |φi〉

Ef − Ev + ω + iε

}

= ω(Ei − Ef − ω)
∑

v

{ 〈φf |xk|φv〉〈φv|xj |φi〉
Ei − Ev − ω + iε

+
〈φf |xk|φv〉〈φv|xj |φi〉

Ef − Ev + ω + iε

}
, (12)

it is easy to show the equivalence of the two expressions for the two-photon decay rate given
in equations (2) and (9). Note that this equivalence can be shown easily using the commutator
relation pi = i[H, xj ], but it holds only if the sum over v extends over the complete spectrum.

Assuming hydrogen wavefunctions in the standard representation, we have that in analogy
to equation (5),

〈φf |xj |φv〉〈φv|xj |φi〉 = 〈φi |xj |φv〉〈φv|xj |φf 〉. (13)

After angular algebra, one obtains for the decay nS → 1S

	
(2)
nS = 4α2

27πm2
lim
ε→0

Re
∫ EnS−E1S

0
dω ω3(EnS − E1S − ω)3

×
(∑

ν

{ 〈1S‖�x‖νP〉〈νP‖�x‖nS〉
EnS − EνP − ω + iε

+
〈1S‖�x‖νP〉〈νP‖�x‖nS〉
E1S − EνP + ω + iε

})2

, (14)
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Table 1. Numerical results for the decay rates nS → 1S and nD → 1S for hydrogen. The rates
scale with Z6 for hydrogen-like ions with nuclear charge number Z. Units are in inverse seconds.
To obtain the decay rate in hertz, one needs to divide by a factor of 2π . We here supplement
the results given in [1] by some values for higher excited S states and also indicated results for
nD → 1S, which were not treated in [1].

|φf 〉 = |1S〉 |φf 〉 = |1S〉
|φi〉 = |2S〉 8.229 352
|φi〉 = |3S〉 2.082 853 |φi〉 = |3D〉 1.042 896
|φi〉 = |4S〉 0.698 897 |φi〉 = |4D〉 0.598 798
|φi〉 = |5S〉 0.287 110 |φi〉 = |5D〉 0.340 883
|φi〉 = |6S〉 0.135 935 |φi〉 = |6D〉 0.206 523
|φi〉 = |7S〉 0.071 402 |φi〉 = |7D〉 0.132 928
|φi〉 = |8S〉 0.040 587 |φi〉 = |8D〉 0.090 016

whereas for nD → 1S decays

	
(2)
nD = 4α2

135πm2
lim
ε→0

Re
∫ Ei−Ef

0
dω ω3(EnD − E1S − ω)3

×
(∑

ν

{ 〈1S‖�x‖νP〉〈νP‖�x‖nD〉
EnD − EνP − ω + iε

+
〈1S‖�x‖νP〉〈νP‖�x‖nD〉

E1S − EνP + ω + iε

})2

, (15)

again in complete analogy to equations (6) and (7), respectively.

3. Numerical results

We here focus on the nS → 1S and nD → 1S decays, as indicated in equations (14) and
(15), respectively. Decays to the ground state have the highest rate for both one-photon [14]
as well as two-photon processes and are therefore of special interest. Due to the infinitesimal
imaginary parts explicitly indicated in equations (14) and (15), we can extend the sum over
intermediate, virtual states over the entire hydrogenic spectrum, including those P states
which have a lower energy than the reference state. We recall here that the double poles at
intermediate resonances are naturally treated using the formula [1]

lim
ε→0

Re
∫ 1

0
dω

(
1

a − ω + iε

)2

= 1

a(a − 1)
. (16)

Simple poles are treated using the well-known Dirac prescription, and the principal-value
integration then yields the real part of the integrals. Numerical results can be obtained by
expressing the matrix elements with the propagators in terms of hypergeometric functions,
following [15, 16]. Final values are indicated in table 1.

The one-loop as well as the two-loop self-energy shifts of hydrogenic states are well
known to follow scaling laws of the form of inverse powers of the principal quantum number
n, as analyzed in [17]. The two-photon decay rate is the imaginary part of this energy shift and
is thus expected to follow an analogous trend with the principal quantum numbers. Analyzing
the data in table 1, we find that the nD → 1S state results appear to follow the asymptotic
behavior (expressed in inverse seconds)

	
(2)
nD = 49(2)

n3
Z6s−1, n → ∞, (17)
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whereas for nS → 1S decay, a fractional power apparently leads to a more satisfactory
representation of the data,

	
(2)
nS = 330(20)

n4.3
Z6s−1, n → ∞. (18)

The results indicated in table 1 are consistent with a decrease of the two-photon decay rate
with increasing n.

4. Discussion and comparison

When comparing to the existing literature, it is useful, first of all, to note the calculations
[2, 5, 6], which are apparently based on second-order perturbation theory for the two-photon
transition amplitude. As a consequence, they present singularities when the energy of one
of the photons reaches a level situated between the initial and final states, and no procedure
is given in the cited references if one does not go beyond second order. When evaluating
differential transition rates [5, 18, 19], the absence of the infinitesimal imaginary part does
not matter, and the numerical results in the velocity gauge [5, 19] and in the length gauge [18]
fully agree. The problem arises when one tries to evaluate the total decay rate, as the existing
singularities are not integrable. Although in [7] fourth-order perturbation theory was used, a
consistent answer does not appear to be found.

It appears that, in general, two approaches have been used so far in the literature in order
to deal with the problematic double poles for the photon energy integrations: (i) the explicit
removal of particular states from the sum over virtual states and (ii) the inclusion of a width
for the intermediate, virtual states.

Let us begin the discussion with the removal of states. Indeed, Chluba and Sunyaev [2],
Florescu et al [6] as well as Cresser et al [7] have used different formulae than those used here,
in order to evaluate the two-photon decay rates. In particular, they use instead of equation (14)
the following formula for nS → 1S decays:

γ
(2)
nS = 4α2

27πm2

∫ EnS−E1S

0
dω ω3(EnS − E1S − ω)3

×
∣∣∣∣∣
∑
ν�N

{ 〈1S‖�x‖νP〉〈νP‖�x‖nS〉
EnS − EνP − ω

+
〈1S‖�x‖νP〉〈νP‖�x‖nS〉

E1S − EνP + ω

} ∣∣∣∣∣
2

, (19)

where N = n (Chluba and Sunyaev [2]) or N = n + 1 (Florescu et al [5, 6] and Cresser et al
[7]), and the notation ν � N of course means that one should sum over the discrete spectrum
for all virtual states with principal quantum numbers as indicated, and of course integrate over
the entire continuum spectrum in addition. For nD → 1S decays, the cited authors use

γ
(2)
nD = 4α2

135πm2

∫ EnD−E1S

0
dω ω3(EnD − E1S − ω)3

×
∣∣∣∣∣
∑
ν�N

{ 〈1S‖�x‖νP〉〈νP‖�x‖nD〉
EnD − EνP − ω

+
〈1S‖�x‖νP〉〈νP‖�x‖nD〉

E1S − EνP + ω

} ∣∣∣∣∣
2

, (20)

with the same proposed values for N. In this case, because the problematic virtual states of
lower energy than the initial state |φi〉 have been explicitly removed from the sum over virtual
states, there are no more singularities infinitesimally displaced from the integration contours
present, and there is therefore no need for any infinitesimal imaginary part iε in the propagator

6
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denominators. Furthermore, |·|2 is equivalent to (·)2 provided our assumption formulated in
equation (5) holds. The corresponding velocity-gauge expressions

η
(2)
nS = 4α2

27πm2

∫ EnS−E1S

0
dω ω(EnS − E1S − ω)

×
∣∣∣∣∣
∑
ν�N

{ 〈1S‖�p‖νP〉〈νP‖�p‖nS〉
EnS − EνP − ω

+
〈1S‖�p‖νP〉〈νP‖�p‖nS〉

E1S − EνP + ω

} ∣∣∣∣∣
2

(21)

and

η
(2)
nD = 4α2

135πm2

∫ EnD−E1S

0
dω ω(EnD − E1S − ω)

×
∣∣∣∣∣
∑
ν�N

{ 〈1S‖�p‖νP〉〈νP‖�p‖nD〉
EnD − EνP − ω

+
〈1S‖�p‖νP〉〈νP‖�p‖nD〉

E1S − EνP + ω

} ∣∣∣∣∣
2

(22)

are not equivalent to the length-gauge expressions in equations (19) and (20), because relation
(12) breaks down if the sum over v does not extend over the entire hydrogen spectrum. The
explicit removal of the ‘problematic’ virtual states from the propagators avoids the necessity of
indicating the infinitesimal imaginary terms in the propagator denominators, but the removal
operation leads to different expressions in the length and velocity gauges and is thus not gauge
invariant.

To illustrate this finding by a numerical example, we observe that we can reproduce the
value of γ

(2)
3D = 0.131 813 s−1 for the decay 3D → 1S with N = n + 1 using the length-

gauge expression (20), in agreement with equation (20) of [7]. However, the velocity-gauge
expression (22) gives a different result, namely, η

(2)
3D = 0.439 368 s−1. These two results

have to be contrasted with the gauge-invariant result of 	
(2)
3D = 1.042 896 s−1, indicated in

table 1. For the decay 3S → 1S, the values are γ
(2)
3S = 8.225 796 s−1 in agreement with

equation (19) of [7], and the velocity-gauge result with 2P and 3P virtual states removed is
η

(2)
3S = 6.192 881 s−1, whereas the gauge-invariant result with the full hydrogenic spectrum

of virtual states reads 	
(2)
3S = 2.082 853 s−1 (see table 1). It is interesting to observe that

	
(2)
3D > γ

(2)
3D , but 	

(2)
3S < γ

(2)
3S .

Let us now turn our attention to the inclusion of a decay width for the intermediate states.
Indeed, the authors of [2, 5–7] arrive at expressions (21) and (22) after analyzing the expression
(for illustrative purposes we restrict ourselves here to the nS → 1S decay)

4α2

27πm2

∫ EnS−E1S

0
dω ω3(EnS − E1S − ω)3

×
∣∣∣∣∣
∑

ν

{
〈1S‖�x‖νP〉〈νP‖�x‖nS〉
EnS − EνP − ω + i

2	
(1)
v

+
〈1S‖�x‖νP〉〈νP‖�x‖nS〉
E1S − EνP + ω + i

2	
(1)
v

} ∣∣∣∣∣
2

. (23)

Let us consider the 3S state as an example. The only ‘problematic’ virtual state is the 2P state
(ν = 2), and using the formula∫ 1

0
dω

∣∣∣∣ 1

a − ω + i	

∣∣∣∣
2

= π

	
+

1

a(a − 1)
+ O(	2), (24)

it is possible to show that the term with ν = 2 in expression (23) gives rise to a contribution
which is equivalent to the one-photon decay rate 3S → 2P, and this decay rate is just the total
one-photon decay rate of the 3S state, and it is equal to the imaginary part of the one-loop

7
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self-energy of the 3S state (in the dipole approximation). The authors of [2, 5–7] thus conclude
that this term should be interpreted as the one-photon decay rate of the 3S state, which has
got nothing to do with the two-photon decay process, and this observation appears to be the
basis for their removal of the 2P state from the sum over virtual states (see also the analysis in
footnote 4 of [7]).

Despite the appealing aspects of the removal operation, it is unfortunately not gauge
invariant, as shown above, and we would like to point out two more aspects that merit a
discussion. First and foremost, the discussion in footnote 4 of [7] shows that expression (23)
gives rise to a one-photon decay rate, effectively mixing the two-loop self-energy with the
one-photon self-energy (according to the interpretation of the decay rate as an imaginary part
of an energy shift). If one would take expression (23) literally, then one should be careful
to avoid a double counting of the one-photon decay rate, which is already contained in the
one-loop self-energy and should not be obtained once more from the imaginary part of the
two-loop self-energy. Cascade contributions are discussed in more detail in section 5.

The second aspect is observed when the analysis in footnote 4 of [7] is generalized to
the 4S → 1S decay. In that case, two cascades are possible, namely, 4S → 3P → 1S and
4S → 2P → 1S. As an easy generalization of the analysis in footnote 4 of [7] shows, the
full one-photon decay rate of the 4S state is obtained from expression (23) only if the virtual
2P and 3P are endowed with their partial decay rates to the 1S ground state, i.e. the 3P decay
rate should be inserted into the propagator denominators as the partial decay rate 3P → 1S,
excluding the decay process 3P → 2S. If one generalizes these considerations further, namely,
to a general decay nS → 1S, then this would imply that one should use different decay rates
	(1)

v in equation (23) to regularize the divergence in 1
/
	(1)

v in equation (24), adjusting them
according to the decay process under study. That prescription would be highly counterintuitive
as the virtual states should somehow ‘know’ about properties of the initial and final states
of the decay process. The ensuing questions have already been noticed by Chluba and
Sunyaev [2].

Let us conclude this section with a remark on asymptotics (17) and (18), which permit
an extrapolation of our results to Rydberg states with high principal quantum numbers. Some
investigations, including [2], lead to results for the two-photon decay rates of higher excited
state which exhibit a linear increase with n instead of a decrease with at least n−3, as indicated
in equations (17) and (18). It is well known that the one-photon rates decrease approximately
with n−3 (see [14]). If the two-photon rates would indeed increase linearly, then there would
be a relative factor n4 with which two-photon rates would grow in comparison to one-photon
rates as the principal quantum number of a state increases. If we take into account the relative
scaling factor of Z2α3/π by which two-photon rates are suppressed with respect to one-photon
rates, then we would have to conclude that the two-photon rates overtake the one-photon rates
for states with a comparatively low principal quantum number of n ≈ 50/

√
Z in a hydrogen-

like ion with nuclear charge number Z. For our results as indicated in table 1, the two-photon
rates are suppressed with respect to one-photon rates by a relative factor Z2α3/π for all
hydrogenic states, because the scaling with n is obtained to be approximately the same for the
one-photon as well as the two-photon rates, and the natural hierarchy of the likelihood of one-
and two-photon events is preserved for all states.

5. Extraction of the cascade contribution

As in section 4, let us focus on a particular example whose generalization is obvious, namely
(this time) the 3S → 1S decays, for which the cascade 3S → 2P → 1S needs to be addressed.

8
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Let us go back once more to equation (14),

	
(2)
3S = 4α2

27πm2
lim
ε→0

Re
∫ E3S−E1S

0
dω ω3(E3S − E1S − ω)3

×
(∑

ν

{ 〈1S‖�x‖νP〉〈νP‖�x‖3S〉
(E3S − EνP − ω + iε)

+
〈1S‖�x‖νP〉〈νP‖�x‖3S〉
(E1S − EνP + ω + iε)

})2

(25)

and adopt the cumbersome, but absolutely unique notation P.V. for the principal value part of
the distribution. If we use the formula

1

x + iε
= (P.V.)

1

x
− iπδ(x) (26)

for all propagator denominators in equation (25) and extract only the contribution due to the
delta functions, then the only contributing virtual state is the 2P state. Because there is a
product of two terms both of which become singular, we cannot avoid to obtain the square of
the delta function,

δ2(ω − E3S − E2P) = δ(0)δ(ω − E3S − E2P) = T

2π
δ(ω − E3S − E2P), (27)

and a further term proportional to δ(ω − E2P + E1S)T /(2π). Here, T is the (long) observation
time proportional to δ(0) in energy space (see, e.g., [3]). The sum of the terms proportional to
δ(0) reads

C
(2)
3S = −T 	

(1)
3S→2P	

(1)
2P→1S,

∫
dT C

(2)
3S = −T 2

2
	

(1)
3S→2P	

(1)
2P→1S, (28)

where we introduce an obvious notation for the partial one-photon rates 	
(1)
3S→2P and 	

(1)
2P→1S.

Note, in particular, that the resulting expression for C
(2)
3S is gauge invariant.

Our result (28) has just the right form to describe the cascade decay, except for the ‘wrong’
sign. For the term to contribute to the decay of the 3S state, it should be positive, but it turns
out to be negative. Let us defer a discussion of this issue and instead consider the extraction
of the cascade contribution from the expression

	̃
(2)
3S = 4α2

27πm2
lim
ε→0

Re
∫ E3S−E1S

0
dω ω3(E3S − E1S − ω)3

×
∏
±

∑
ν

{ 〈1S‖�x‖νP〉〈νP‖�x‖3S〉
E3S − EνP − ω ± iε

+
〈1S‖�x‖νP〉〈νP‖�x‖3S〉
E1S − EνP + ω ± iε

}
, (29)

where
∏

± means the product of two terms, with either sign. The product over the two terms
with ±iε is of course equivalent to the square of the modulus of the two terms in the integrand,
in analogy to equation (23). If we now use (26), then we obtain

C̃
(2)

3S = T 	
(1)
3S→2P	

(1)
2P→1S,

∫
dT C̃

(2)

3S = T 2

2
	

(1)
3S→2P	

(1)
2P→1S. (30)

This result has the ‘right’ sign, and has, for large T, the right temporal dependence for a
cascade process.

In order to resolve the paradox, one first should note that both signs found in equations (28)
and (30) actually have a valid interpretation. The two-loop self-energy contains both radiative
corrections to the one-photon decay as well as the full two-photon decay amplitude. The

9
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radiative corrections to the one-photon decay are obtained by ‘cutting’ appropriate internal lines
in the diagrams, and indeed, we can rederive the first three radiative corrections to one-photon
as given in equation (27) of [20] by considering resonant intermediate states in the ‘outer’
electron propagators in terms of equation (3). (The remaining terms used in equation (27)
of [20] follow from standard third-order perturbation theory.) The magnitude of the radiative
corrections to one-photon decay is decreased by the possibility of cascade processes, due
to the virtual-to-real conversion of the photons appearing in the integrals for the radiative
corrections to the one-photon decay at resonance, and this decrease is consistent with the sign
of the right-hand side of equation (28). On the other hand, the two-photon decay amplitude
should be increased by the cascade processes, and this increase is consistent with the sign of
the right-hand side of equation (30).

In the sum of the radiative corrections to the one- and two-photon decays, the incoherent
cascade contributions cancel, and this is in analogy to the discussion in [3] for a different, but
physically related process, namely, the coherent/incoherent pair production via a virtual/real
photon intermediate state by an electron in crossed, static electromagnetic fields.

Immediately, new questions arise. Our considerations suggest that our formulation in
equation (3) provides infinitesimal imaginary parts that are appropriate for the evaluation of
radiative corrections to the one-photon decay, but provides the ‘wrong’ sign of the cascades
for two-photon decays. This could lead to new doubt regarding whether we can extract a valid
expression for the two-photon decay rate from our equation (3) in the first place. The question
is: Can we extract, by some mathematically justifiable procedure, from equation (29), an
expression for the two-photon decay rate which either confirms or invalidates our result for the
two-photon decay rate, under a suitable gauge-invariant subtraction of the cascade contribution
from the integrand in (29)?

First, since the cascade contributions correspond to the delta function in equation (26),
it is clear that the two-photon decay rate corresponds to the product of two principal-value
distributions of the form,(

P.V.
1

ω − ω0

) (
P.V.

1

ω − ω0

)
=

(
P.V.

1

ω − ω0

)2

, (31)

which is integrated over ω. As similar problems have occurred in field theory (see
equation (6.23) on p 168 of [4]), we are provided with a guiding principle for the calculation.
Namely, we consider an arbitrary function f , integrated over a finite interval (0, ωmax) with
f (0) = f (ωmax) = 0:∫ ωmax

0
dω f (ω)

(
P.V.

1

ω − ω0

)2

= lim
η→0

∫ ωmax

0
dω f (ω)

(
P.V.

1

ω − ω0 + η

)(
P.V.

1

ω − ω0

)

= lim
η→0

1

η

∫ ωmax

0
dω f (ω)

(
P.V.

1

ω − ω0
− P.V.

1

ω − ω0 + η

)

= lim
η→0

1

η

∫ ωmax

0
dω[f (ω) − f (ω − η)]

(
P.V.

1

ω − ω0

)

=
∫ ωmax

0
dω

[
∂

∂ω
(f (ω) − f (ω0))

] (
P.V.

1

ω − ω0

)

= − ωmaxf (ω0)

ω0(ωmax − ω0)
+ P.V.

∫ ωmax

0
dω

f (ω) − f (ω0)

(ω − ω0)2
. (32)

10
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This subtraction, applied to equation (29), gives rise to

	
(2)
3S = 4α2

27πm2
P.V.

∫ E3S−E1S

0
dω

×
⎛
⎝ω3(E3S − E1S − ω)3

∣∣∣∣∣
∑

ν

{ 〈1S‖�x‖νP〉〈νP‖�x‖3S〉
E3S − EνP − ω

+
〈1S‖�x‖νP〉〈νP‖�x‖3S〉

E1S − EνP + ω

} ∣∣∣∣∣
2

− (E3S − E2P)
3(E2P − E1S)

3

×
( 〈1S‖�x‖2P 〉2〈2P‖�x‖3S〉2

(E3S − E2P − ω)2
+

〈1S‖�x‖2P 〉2〈2P‖�x‖3S〉2

(E2P − E1S − ω)2

)⎞
⎠ +

4α2

27πm2
F . (33)

Here, we have subtract the cascade-generating terms according to equation (32), thus leading
to an integral which is finite under a principal-value prescription, because the double poles have
explicitly been subtracted. Because prescription (32) takes the numerators to exact resonance,
the subtraction terms in (33) are gauge invariant and indeed proportional to 	

(1)
3S→2P	

(1)
2P→1S.

The additional term F is due to the boundary term found in (32),

F = −2(E3S − E1S)(E3S − E2P)
2(E2P − E1S)

2〈1S‖�x‖2P 〉2〈2P‖�x‖3S〉2. (34)

Finally, returning to our original iε prescription, we have according to equation (16),

lim
ε→0

Re
∫ ωmax

0
dω

f (ω0)

(ω − ω0 + iε)2
= − ωmaxf (ω0)

ω0(ωmax − ω0)
(35)

and in view of (32) and (35), we obtain the (perhaps somewhat surprising) equality

lim
ε→0

Re
∫ ωmax

0
dω

f (ω)

(ω − ω0 + iε)2
=

∫ ωmax

0
dω f (ω)

(
P.V.

1

ω − ω0

)2

, (36)

which is subject to the interpretation of the squared principal-value contribution according to
equation (32). We can finally state that result (33) agrees with formula (25), so that, under the
provisions of the regularization implied by equation (32), it is irrelevant if we start from an
expression where the integrand for the two-photon decay is formulated as a modulus squared
or with two infinitesimal imaginary parts pointing in the same direction.

6. Conclusions

We have analyzed two-photon decay processes involving nS → 1S and nD → 1S channels in
hydrogen-like ions. Our general formulae (4) and (11) are gauge-invariant and are obtained
with otherwise unspecified, arbitrary infinitesimal imaginary parts iε, provided the limit ε → 0
is taken after the integrations over the photon energies have been performed (non-uniform
convergence). Numerical results are presented in table 1. These are nonrelativistic results
which scale as Z6 with the nuclear charge number Z. For a relativistic generalization, see [21].

From a more philosophical point of view, we can say that the two-photon decay process
turns out to be an extremely subtle physical phenomenon, which demands a lot of mathematical
sophistication in its analysis. Without a careful handling of the distributions, including
ill-defined squares of delta functions, it is impossible to obtain consistent answers. The
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current work attempts to provide a proposal for a consistent framework in which the resonant
intermediate states and the generated double poles can be addressed, while preserving the
interpretation of the integrand of the two-photon decay rate as a differential decay rate with
respect to the photon energy.

Three remarks conclude this work. (i) Following [3], we should point out that there is
no guarantee that the coherent two-photon decay rate as evaluated here always needs to be
positive (except for the 2S state, where no resonant intermediate states are present). Indeed,
as equation (33) shows, the result is obtained as a subtracted integral, and the integrand is
not necessarily positive. For all transitions considered here, the rate is positive (see table 1),
but it is known that radiative corrections to decay rates can be negative, and the coherent
two-particle contribution to the decay rate beyond the cascade constitutes a correction to the
decay rate which need not be positive. This statement is paradoxical, but we can point out that
this statement has already been confirmed after equation (20) of [3] in an absolutely analogous
situation. (ii) The observation time T as implied in equation (30) has to be sufficiently
large (larger than the typical formation time of radiation in the system, according to [3], or
otherwise the decay process will proceed in a different way). In our case, the natural formation
time of radiation is given by a time inversely related to the decay width of the initial state of the
process, which is naturally identified as the one-photon decay rate of the highly excited states.
(iii) It may seem that the agreement of the integration around the infinitesimally displaced
poles as described in section 2 and the regularized principal-value prescription as described in
section 5 is purely accidental. However, one should remember that similar integrals appear in
Lamb-shift related self-energy calculations (e.g., [22]), and therefore, the predictions for the
Lamb shift of excited states would have had to be reinvestigated if we had not found agreement
of the two computational schemes discussed here. Fortunately, the internal consistency of
mathematics protects us from having to reinvestigate accurate theoretical predictions based on
quantum electrodynamics.
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